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Crossover from Selberg’s type to Ruelle’s type zeta function in classical kinetics

Daniel L. Miller*
Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 2 March 1998!

The decay rates of the density-density correlation function are computed for a chaotic billiard with some
disorder inside. In the case of the clean system the rates are zeros of Ruelle’s zeta function and in the limit of
strong disorder they are roots of Selberg’s zeta function. We constructed the interpolation formula between two
limiting zeta functions by analogy with the case of the integrable billiards. The almost clean limit is discussed
in some detail.@S1063-651X~99!03103-7#

PACS number~s!: 05.45.2a, 05.20.Dd, 51.10.1y
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It is natural to assume that chaotic billiards with a sm
amount of disorder@1–3# are good models for ballistic cavi
ties, which have been employed in a number of recent
periments, see Ref.@4#. Such a model is interesting becau
the disorder~in two dimensions! can be characterized by on
parameter: the elastic scattering timet. The mixing proper-
ties of this model in two important limitst→0 andt→`
were known in the literature, see Refs.@5,6#. In the present
paper we discuss the crossover from one limit to the other
some two-dimensional billiard. The case of the thre
dimensional billiards is more complicated. Particularly, t
uniform scattering in three dimensions leads to very f
resonant mixing. At the end of the paper we provide
generalization of our results for the case of three dimensio

Let us focus attention on the eigenvalues and the eig
modes of the kinetic equation for the distribution functi
f (rW,f) of noninteracting particles inside a two-dimension
billiard. This function is defined on the constant ener
manifold uvW fu5v5const, andvW f5„v cos(f),v sin(f)…. The
precise form of the kinetic equation depends on the detail
the impurity potential, but we are going to investigate tw
models,

] f

]t
1vW f•¹W f 55

f̄ 2 f

t
, model 1

1

t

]2f

]f2 , model 2,

~1!

where f̄ (rW)5* f (rW,f)df/(2p). The above equation has t
be solved with mirror boundary conditionsf (rW,f)
5 f „rW,2a(rW)2p2f…, whererW is taken on the boundary o
the billiard andnW 5„cos(a),sin(a)… is normal to the boundary
Equation ~1! has a special solutionf 0(rW,f)5const for all
values oft and we will ignore it in the rest of the paper.

In both models, the collision integral conserves ener
The first model corresponds to uniform scattering in all
rections and the second model is valid if small angle scat
ing is dominant. There is a relatively simple analytical tre
ment of these two limiting cases. In the same time it w
give us the qualitative understanding of the general case
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Let us look for solutions proportional toe2snt. The eigen-
valuessn of the kinetic equation are so-called mixing rate
or decay rates of the density-density correlation funct
whent→0 or Ruelle’s resonances whent→`. These reso-
nances can be found as zeros of the spectral determi
Z(s). Let us start to computeZ(s) in the limit of pure chaos.
Cvitanovic and Eckardt@7# have computed the spectral d
terminant for the axiomA system, but the result is the ex
pansion over the unstable periodic orbits and it seems to
valid for a wide class of systems. Therefore, in the limitt
→`, the spectral determinant is

2 ln„Z~s!…5(
p

(
r 51

`
1

r

1

udet~ I 2M p
r !u

eslpr /v, ~2!

where v is the velocity. This expression contains the su
over the primitive periodic orbitsp taken with repetitionr. In
the case of billiards, the action for the periodic trajectory
just the lengthl pr . Each oscillating term in the sum in Eq
~2! is weighted by the stability amplitude, which behaves
average, as

1

udet~ I 2M p
r !u

[e2lprl pr /v'e2l l pr /v, ~3!

where the first equality defineslpr , andl is the Lyapunov
exponent of the billiard. The zeta function given by Eq.~2! is
of Ruelle’s type.

When the disorder is strong, the kinetic equation can
transformed into the diffusion equation forf̄ ,

] f̄

]t
2

v2t

2
¹2 f̄ 50, ~4!

which has to be solved with boundary conditionsn•W¹W f̄ 50.
This approximation is valid if the spatial variation of th
initial distribution is small on the scale of the mean-free-pa
tv. Equation~4! allows one to find the decay of modes wi
f̄ [” 0. The decay rates for modes withf̄ 50 for all rW should
be computed in a different way.

In the limit t→0 we can use the ‘‘semiclassical’’ ap
proximation for equation

~k21¹2! f̄ 50, ~5!
2838 ©1999 The American Physical Society
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where k252s/(v2t). The logarithm of the Selberg’s typ
zeta function is again the sum over periodic orbits@8,9#,

2 ln„Z~s!…5(
p

(
r 51

`
1

r

1

Audet~ I 2M p
r !u

eikl pr . ~6!

Here the phase factors correspond to the case when Eq~5!
should be solved with the Neumann boundary condition
Maslov’s indexes vanish@10#. The natural question to ask i
whether it is possible to compute the decay rates of
modes withf̄ [” 0 for all values oft by constructing a suit-
able zeta function?

We can understand the connection between differ
types of zeta functions by making use of the following a
proximation:

2 ln„Zn~x!…5(
pr

1

r
e~x2lpr /n!l pr /v, ~7!

Z2~x!'Z1~x1l/2!, ~8!

whereZ1 is Ruelle’s type zeta function,Z2 is Selberg’s type
zeta function and Eq.~8! is known as al/2 shift. Such a shift
was observed in the problem of quantum and classical s
tering in a three-disk problem, compare Figs. 2.14 and 3.
Ref. @11# and see Refs.@12,13# for details. Equation~8! holds
with high accuracy in various systems@14#; however, it is
not yet known whether it is an approximation or an ex
result.

Assuming that Eq.~8! is accurate enough, we have th
relation for our zeta function being taken for different valu
of t,

Z~s!5H Z1~s!'Z2S s2
l

2D , t@
1

usu
,
1

l

Z2S iA2s

t D , t!
1

usu
,
1

l
.

~9!

We argue that the kinetic zeta function is the functionZ2 of
the yet unknown combination ofs, t, andl. This combina-
tion can be obtained for integrable billiards. The path in
gral method will help us to modify this combination in th
chaotic case. As an immediate consequence of the rela
Eq. ~9!, we have for the eigenvalues of the kinetic equati

sn5H l/21 iqnv, t→`

qn
2v2t/2, t→0,

~10!

whereqn ,n51 . . .` are the eigenvalues of the wave num
ber in Eq.~5!. The full dependencesn on qn ,t andl exists
if our postulate is correct, and we will compute it.

Let’s examine first the integrable case. Model 1 for t
square billiard was solved by Atland and Gefen@1#, and
Agam and Fishman@2#, who modeled the short-range ra
dom potential by random spheres or circles. For the squ
billiard of sizeL the spatial dependence of the densityf̄ (r ) is
(exp(iqW•rW), whereq is such that sin(qxL)sin(qyL)50, and the
sum is over four possible directions ofqW . Then the values of
d

e

nt
-

t-
of

t

s

-

on
,

re

q are ‘‘quantized,’’ and we will denote themqn , and the
modes withf̄ [” 0 can be numbered

f n~rW,f,t !}(
t21

2s1t211 ivW fqW n

eiqW nrW2st, ~11!

where the sum is over four possible directions ofqW n . Inte-
gration overf leads to the equation forsn ,

t225~sn2t21!21v2qn
2 , ~12!

and the corresponding zeta function is

2 ln„Z~s!…5(
p

A~L4q/p3l p
3!eiql p, ~13!

wherep is not a single orbit but the resonant tori@15#, and
the connection betweens andq is as in Eq.~12!.

In the case of model 2, the solutions are still proportion
to eiq•W rW, but the angular dependence is different. The solut
with f̄ [” 0 is the ‘‘ground state’’ of

F2s1 ivW f•qW n2
1

t

]2

]f2G f n50, ~14!

because the real parts of the decay rates are positive. Sur
ingly, Eq. ~12! gives a numerically good approximation fo
sn for this model. Other ‘‘angular’’ modes, which havef̄
50, are very different for models 1 and 2.

It is not easy to compute eigenmodes of Eq.~1! for the
integrable billiards, which have other than rectangu
shapes. For such cases, Eq.~13! becomes an interpolation
formula for the kinetic zeta function. One should only r
place the pre-exponential factor by the amplitude from
Berry-Tabor@16# formula. For example, the resonant tori fo
the circular billiard of radiusR are numbered by the winding
number M and by the number of verticesn, have length
l Mn5nLMn /p, whereLMn52pR sin(pM/n). Then one can
use Eq.~13! after the replacementp→Mn, and L→LMn ,
see Ref.@17#.

Combining together Eqs.~2!, ~6!, ~12!, and ~13! we can
introduce the kinetic zeta function as

2 ln„Z~s!…5(
p

(
r 51

`
1

r
e[A~s22/tpr!s2lpr/2] l pr /v, ~15a!

where

tpr5H t, lprt/2,1

2/lpr , lprt/2.1.
~15b!

For lt,1/2 the kinetic zeta function coincides with Se
berg’s type zeta function Eq.~6! in the domain of the com-
plex s plane ustu!1. For lt.1/2 the kinetic zeta function
becomes independent oft and coincides with Ruelle’s type
zeta function Eq.~2! in the domain of the complexs plane
ustu@1.

The interpolation formula Eqs.~15! for the kinetic zeta
function implies the following interpolation formula for th
decay rates:
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sn55
1

t
2A1/t22~qnv !2,

1

qnv
>t

1

t
1 iA~qnv !221/t2,

2

l
>t>

1

qnv

l

2
1 iqnv, t>

2

l
,

~16!

whereqn are the eigenvalues of the wave number in Eq.~5!.
There is a gap between the last two expressionssnut52/l20
2snut52/l10;l2/(qnv), which is numerically small for
most cases. The motion of the decay rates on the com
plane is schematically shown in Fig. 1. In the limit of stro
disorder some of thesn are on the real axis, and the imag
nary part ofsn becomes nonzero whentqnv51. Thensn
moves along the arc and stops whent5l/2.

Equations~10! and ~16! show that a chaotic system
qualitatively different from a diffusive system from the poi
of view of the position of Ruelle’s resonancessn on the
complex plane. In the chaotic limit all resonances lie on
line parallel to the imaginary axis. The disorder induces m
tion of the resonances toward the real axis as was found
Agam and Fishman@2#.

The interpolation formula between Ruelle’s type and S
berg’s type zeta exists only if the diffusion modes transfo
to the so-called Frobenius-Perron modes as the disorder
to zero. This has not yet been proven for our case. The m
difficulty is that the diffusion modes are selected from
kinetic modes by the conditionf̄ [” 0. At the same time
Frobenius-Perron modes are selected by the choice of
functional space. However, in other systems, one can c
sider the diffusion modes as modes of the Frobenius-Pe
operator@18#.

Some additional information might be obtained from t
properties of the propagator of Eq.~1!, which can be written
as a path integral for model 2,

FIG. 1. The decay rates of the density-density correlation fu
tion move on the complex plane when disorder decreases, as s
by arrows. The termination point is Res'l/2, where l is the
Lyapunov exponent.
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G~rW,f,rW0 ,f0 ,t !5E D@c#dS rW2rW02E
0

t

vW cdtD
3e2t/4$*

0

t1ċ2dt1*
t1

t2ċ2dt1•••1* tn

t ċ2dt%,

~17!

where c(0)5f0 ,c(t j20)1c(t j10)52a j , . . . ,c(t)5f,
and the pathrW01*0

t vW cdt touches the boundariesn times at

the pointsrW1 , . . . ,rWn , at the timest1 , . . . ,tn . The anglea j
is the direction of the tangent to the boundary at the refl
tion point rW j . The trace of the propagator Eq.~17! known
also as the return probability is

p~ t !5E drW0E dfE D@c#e2t/4*0
t ċ2dtdS E

0

t

vW cdtD ,

~18!

wherec(t)5c(0)5f and*0
t ċ2dt is defined as in Eq.~17!.

The propagator Eq.~17! should interpolate between th
Frobenius-Perron operator in the limitt→` and the diffu-
sion operator in the limitt→0. Then the trace of this propa
gator Eq.~18! should provide us with a systematic way
compute the interpolation formula for the zeta function, b
cause2 ln Z(s)5*0

`est t21p(t)dt. Here the sign ofst in the
Laplace transform is positive, because we want the root
the zeta function to have the meaning of the decay rates

In the limit of weak disordert→`, one may hope to
obtain the small corrections}1/t to the Frobenius-Perron
operator, and, therefore, to Eq.~2!. Particularly, one may
expect to obtain the additional ‘‘stabilization’’ of the per
odic orbits through the disorder. Let us consider the vicin
of the periodic orbitp in phase space. The path in such
vicinity can be described by the coordinatex(t)5vt along
the orbit, by the coordinatey(t) normal to the orbit, and by
the deviation of the direction of motionf(t). The position of
the particle at the end of the path and at the beginning of
path are connected by

S y~ t !

f~ t !
D 5M pS y~0!

f~0!
D 1(

j 51

np

M p jS u j

Lp j

2

u j

D , ~19!

where the orbitp crosses the billiardnp times. In other
words, the orbit consists ofnp segments of lengthLp j . When
the particle is going along the segmentj, it can be scattered
by the disorder at small angleu j , and then the rest of the
path is distorted too. The cumulative change of the end of
path is given by the sum in the right-hand side of Eq.~19!,
whereM p j is the monodromy matrix of the piece of the orb
consisting of the segmentsLp j11 , . . . ,Lpnp

. One can see
immediately from Eq.~19! that the stability amplitude of the
closed path y(t)5y(0),f(t)5f(0) is independent of
u1 , . . . ,unp

, and, therefore, it is independent oft. There-

fore, there are no 1/t corrections to the zeta function Eq.~2!
and our interpolation formula Eq.~15! is independent oft
for t.2/l.

In the case of the three-dimensional billiards, the effect
the disorder is different because the scattering beco

-
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three-dimensional and the distribution function depends
the three coordinates and two angles:

] f

]t
1vW uf•¹W f 5

1

t H f̄ 2 f , model 1

¹uf
2 f , model 2,

~20!

where vW uf5(sinu cosf, sinu sinf, cosu), ¹uf
2 [(1/

sinu)(]/] u)sinu(]/]u)1(1/sin2u)(]2/]f2) is the angular part
of the Laplace operator,fW[” 0, and the bar means the avera
over the solid angle. For the cubic billiard the spatial dep
dence of the density is again(eiqW •rW, where the sum is ove
the six orthogonal orientations ofqW , and the modes are se
lected by the rule sin(qxL)sin(qyL)sin(qzL)50. Then, the dis-
persion relation for the model 1,~uniform scattering!, can be
found in Ref.@19#, Eq. ~12.2.11!:

12st5
qvt

tan~qvt!
, ~21!

where qvt,p. In other words there are no modes wi
qvt>p. Equation ~21! describes the diffusion modes fo
tt
n,
s

cs

H.
n

-

small t, but it cannot be used for larget. If the mode hasq
close top/(vt), then the decay of such a mode is very fa
s}(p2qvt)21.

The model with small angle scattering in three dimensio
is the Fokker-Planck equation for the distribution functio
which should be solved together with mirror boundary co
ditions on the billiard boundary. The solutions inside t
cubic billiard have the dispersions(q) similar to that of the
square billiard, if f̄ [” 0. Therefore, one may hope that E
~15! gives the interpolation of the zeta function of th
Fokker-Planck equation for modes withf̄ [” 0.

In summary, we have constructed the interpolation f
mula for the zeta function of the kinetic equation, in bo
‘‘chaotic,’’ Eqs. ~15!, and ‘‘integrable,’’ Eq.~13!, cases. Our
zeta function describes the modes with nonzero angle a
age only, i.e., modes with nonzero density of particles. Fr
the mathematical point of view, our kinetic zeta functio
interpolates between Ruelle’s and Selberg’s zeta functio
Our formulas are independent of the particular choice of
collision integral for two-dimensional billiards and are su
able for small angle scattering in three dimensions.
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